Pre_GI: SWBIT SVG BLASTN

Query: NC_017328:2785309 Shigella flexneri 2002017 chromosome, complete genome

Lineage: Shigella flexneri; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism, along with Shigella sonnei, is the major cause of shigellosis in industrialized countries and is responsible for endemic infections. This genus is named for the Japanese scientist (Shiga) who discovered them in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. Human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, and over 1 million deaths worldwide are attributed to them. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. Extremely virulent organisms that require very few cells in order to cause disease. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007492:2629350 Pseudomonas fluorescens PfO-1, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from agricultural loam (sand, clay, and organic matter) soil in 1988 by Compeau et al. and is well adapted to soil environments. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants.