Pre_GI: SWBIT SVG BLASTN

Query: NC_017259:25400 Buchnera aphidicola str. Ua (Uroleucon ambrosiae) chromosome,

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008819:1531187 Prochlorococcus marinus str. NATL1A, complete genome

Lineage: Prochlorococcus marinus; Prochlorococcus; Prochlorococcaceae; Prochlorales; Cyanobacteria; Bacteria

General Information: This strain was collected from the north Atlantic Ocean at a depth of 30 m and was isolated by filter fractionation. This strain belongs to the 'low light-adapted' ecotype, clade I, and has a high Chl b/a2 ratio. Marine cyanobacterium. This non-motile bacterium is a free-living marine organism that is one of the most abundant, as well as the smallest, on earth, and contributes heavily to carbon cycling in the marine environment. This cyanobacterium grows in areas of nitrogen and phosphorus limitation and is unique in that it utilizes divinyl chlorophyll a/b proteins as light-harvesting systems instead of phycobiliproteins. These pigments allow harvesting of light energy from blue wavelengths at low light intensity.