Pre_GI: SWBIT SVG BLASTN

Query: NC_017254:545236 Buchnera aphidicola str. JF98 (Acyrthosiphon pisum) chromosome,

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003912:472000 Campylobacter jejuni RM1221, complete genome

Lineage: Campylobacter jejuni; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This strain (RM1221; ATCC BAA-1062) was isolated from the skin of a retail chicken by the Produce Safety and Microbiology Research Unit (Western Regional Research Center, Albany, CA) and minimally passaged. Causes food poisoning. This organism is the leading cause of bacterial food poisoning (campylobacteriosis) in the world, and is more prevalent than Salmonella enteritis (salmonellosis). Found throughout nature, it can colonize the intestines of both mammals and birds, and transmission to humans occurs via contaminated food products. This organism can invade the epithelial layer by first attaching to epithelial cells, then penetrating through them. Systemic infections can also occur causing more severe illnesses.