Query: NC_017248:529500 Brucella melitensis NI chromosome chromosome I, complete sequence

Lineage: Brucella melitensis; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism is a facultative intracellular bacteria that causes abortion in wild and domestic animals, usually goats or sheep, and undulant fever in humans. Brucellosis is a major health problem in the Mediterranean region and parts of Asia, Africa, and Latin America, where it causes severe economic losses. The disease is transmitted to humans by nonpasteurized milk and milk products or by direct contact with infected animals or carcasses.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012416:852000 Wolbachia sp. wRi, complete genome

Lineage: Wolbachia; Wolbachia; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Endosymbiont. Obligate intracellular bacterium infects around 20% of all insect species. Naturally infects Drosophila simulans and induces almost complete cytoplasmic incompatibility in its host. Wolbachia sp. subsp. Drosophila simulans (strain wRi) is an intracellular proteobacterium that infect insects as well as isopods, spiders, scorpions, mites, and filarial nematodes. It is maternally inherited and induces reproductive alterations of insect populations by male killing, feminization, parthenogenesis, or cytoplasmic incompatibility. In insect populations, Wolbachia sp. induce reproductive manipulations to enhance their own spreading. The most frequently observed reproductive abnormality is cytoplasmic incompatibility, where uninfected females are unable to produce offspring with infected males, whereas infected females can produce offspring with both infected and uninfected males, thus creating a reproductive advantage for infected females. Other spectacular effects of Wolbachia sp. infections are male embryo killing, feminization, and parthenogenesis induction.