Pre_GI: SWBIT SVG BLASTN

Query: NC_017246:528825 Brucella melitensis M5-90 chromosome chromosome I, complete

Lineage: Brucella melitensis; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism is a facultative intracellular bacteria that causes abortion in wild and domestic animals, usually goats or sheep, and undulant fever in humans. Brucellosis is a major health problem in the Mediterranean region and parts of Asia, Africa, and Latin America, where it causes severe economic losses. The disease is transmitted to humans by nonpasteurized milk and milk products or by direct contact with infected animals or carcasses.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010424:1563033 Candidatus Desulforudis audaxviator MP104C, complete genome

Lineage: Desulforudis audaxviator; Desulforudis; Peptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Its genome indicates a motile, sporulating, sulfate-reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon by using machinery shared with archaea. Candidatus Desulforudis audaxviator is a gram positive sulfate reducing bacteria identified in fracture water from a borehole at a depth of 2.8 km in a South African gold mine. Water from these boreholes is very old (low-biodiversity fracture water), suggesting that these bacteria have been isolated from the Earth's surface for as much as several million years.