Pre_GI: SWBIT SVG BLASTN

Query: NC_017246:1942293 Brucella melitensis M5-90 chromosome chromosome I, complete

Lineage: Brucella melitensis; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism is a facultative intracellular bacteria that causes abortion in wild and domestic animals, usually goats or sheep, and undulant fever in humans. Brucellosis is a major health problem in the Mediterranean region and parts of Asia, Africa, and Latin America, where it causes severe economic losses. The disease is transmitted to humans by nonpasteurized milk and milk products or by direct contact with infected animals or carcasses.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007406:632436 Nitrobacter winogradskyi Nb-255, complete genome

Lineage: Nitrobacter winogradskyi; Nitrobacter; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Nitrite-oxidizing bacterium. Members of this genus are found in marine, freshwater, and terrestrial habitats, often in association with ammonia-oxidizing bacteria. These organisms oxidize nitrate, generated by the oxidation of ammonia, to nitrate and play an important role in the global nitrogen cycle. The enzyme involved in nitrite oxidation, nitrite oxidoreductase, can also reduce nitrate to nitrite in the absence of oxygen, allowing Nitrobacter sp. to grow anaerobically. Nitrobacter winogradskyi is commonly isolated from soil, fresh and sea water, sewage, and compost. This organism can grow anaerobically using nitrate as the electron acceptor, forming nitrite, nitric oxide, and nitrous oxide.