Pre_GI: SWBIT SVG BLASTN

Query: NC_017215:1091941 Bifidobacterium animalis subsp. lactis CNCM I-2494 chromosome,

Lineage: Bifidobacterium animalis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes. Bifidobacterium animalis and Bifidobacterium lactis were originally considered to be separate species. Recent studies evaluating the DNA relatedness and phenotypic similarities of these species has determined that they represent a single species.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007577:1047000 Prochlorococcus marinus str. MIT 9312, complete genome

Lineage: Prochlorococcus marinus; Prochlorococcus; Prochlorococcaceae; Prochlorales; Cyanobacteria; Bacteria

General Information: This strain was isolated by flow cytometry from water collected from the Gulf Stream in the north Atlantic Ocean. Marine cyanobacterium. This non-motile bacterium is a free-living marine organism that is one of the most abundant, as well as the smallest, on earth, and contributes heavily to carbon cycling in the marine environment. This cyanobacterium grows in areas of nitrogen and phosphorus limitation and is unique in that it utilizes divinyl chlorophyll a/b proteins as light-harvesting systems instead of phycobiliproteins. These pigments allow harvesting of light energy from blue wavelengths at low light intensity.