Pre_GI: SWBIT SVG BLASTN

Query: NC_017208:1 Bacillus thuringiensis serovar chinensis CT-43 chromosome, complete

Lineage: Bacillus thuringiensis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism, also known as BT, is famous for the production of an insecticidal toxin. The bacterium was initially discovered as a pathogen of various insects and was first used as an insecticidal agent in the early part of this century. This organism, like many other Bacilli, is found in the soil, where it leads a saprophytic existence, but becomes an opportunistic pathogen of insects when ingested. The specific activity of the toxin towards insects and its lack of toxicity to animals has made this organism a useful biocontrol agent. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The presence of a parasporal crystal, which is outside the exosporium of the endospore, is indicative of production of the toxin, and serves as a marker for this species.Activation of the toxin typically requires a high pH environment such as the alkaline environments in insect midguts followed by proteolysis.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010994:57362 Rhizobium etli CIAT 652, complete genome

Lineage: Rhizobium etli; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: It is a nitrogen-fixing symbiotic bacteria that interacts with the root of the common bean plant Phaseolus vulgaris. The molecular biology and evolution of R. etli and its relation to other nitrogen/fixing symbionts has been well studied. The genomic sequence will provide information on the process of symbiosis, on the genetic systems that allow the survival and adaptations of this bacteria to the soil, and on the evolutionary relationship and the symbiosis origin of this organism.