Pre_GI: SWBIT SVG BLASTN

Query: NC_017066:57571 Rickettsia typhi str. TH1527 chromosome, complete genome

Lineage: Rickettsia typhi; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, is composed of obligate intracellular pathogens. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host. This organism causes murine typhus and is an obligate intracellular pathogen that infects both the flea vector and hosts such as human, rat, and mouse. R. prowazekii, and genomic comparisons demonstrate colinearity and similarity to the genome of that organism except for two independent inversions near the origin and terminus. In the flea vector, the bacterium penetrates the gut epithelial barrier and is found in the feces which become infective.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013418:459650 Blattabacterium sp. (Periplaneta americana) str. BPLAN, complete

Lineage: Blattabacterium; Blattabacterium; Blattabacteriaceae; Flavobacteriales; Bacteroidetes; Bacteria

General Information: This organism is the endosymbiont of the American cockroach, Periplaneta americana. It is a Gram-negative maternally inherited bacteria which lives in specialized cells in the host's abdominal fat body. Phylogenetic analyses for the Blattabacterium-cockroach symbiosis supports the hypothesis of co-evolution between symbionts and hosts dating back to more than 140 million years ago. Cockroaches are omnivorous insects, often subsisting on a nitrogen-poor diet, and Blattabacterium have been hypothesized to participate in uric acid degradation, nitrogen assimilation, and nutrient provisioning. Genome sequencing and metabolic reconstruction shows that Blattabacterium can recycle nitrogen from urea and ammonia, which are uric acid degradation products, into glutamate, using urease and glutamate dehydrogenase, and thus would be able to provide its host with some essential amino acids, vitamins and cofactors. The bacterium relies on asparagine and glutamine supplied by the host; it may be able to make proline from arginine via the urea cycle.