Pre_GI: SWBIT SVG BLASTN

Query: NC_017066:33268 Rickettsia typhi str. TH1527 chromosome, complete genome

Lineage: Rickettsia typhi; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, is composed of obligate intracellular pathogens. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host. This organism causes murine typhus and is an obligate intracellular pathogen that infects both the flea vector and hosts such as human, rat, and mouse. R. prowazekii, and genomic comparisons demonstrate colinearity and similarity to the genome of that organism except for two independent inversions near the origin and terminus. In the flea vector, the bacterium penetrates the gut epithelial barrier and is found in the feces which become infective.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007799:686358 Ehrlichia chaffeensis str. Arkansas, complete genome

Lineage: Ehrlichia chaffeensis; Ehrlichia; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This strain is the first isolate of Ehrlichia chaffeensis, which was obtained from a patient on an army base in Arkansas, USA in 1990. Causes disease in humans. This organism is an obligate intracellular pathogen that exists within vacuoles in the cytoplasm of monocytes or granulocytes. Transferred during an insect (tick) bite, it can cause disease in humans (human monocytic ehrlichiosis) and can reside in several other animals and is a problem in immunocompromised patients. The bacterium inhibits phagosome-lysozome fusion as well as programmed cell death (apoptosis) of the host cell, similar to what is observed with Anaplasma phagocytophilum.