Pre_GI: SWBIT SVG BLASTN

Query: NC_017044:278500 Rickettsia parkeri str. Portsmouth chromosome, complete genome

Lineage: Rickettsia parkeri; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Animal pathogen in Mammalia (intracellular obligate). Rickettsiae are obligate intracellular Gram-negative bacteria mostly found in arthropods, some of which cause mild to severe diseases in humans. Rickettsia parkeri, a member of the spotted fever group Rickettsia (SFGR), was first isolated from the Gulf Coast tick, Amblyomma maculatum, in 1937. In 2004, the first confirmed human infection with R. parkeri was reported in a 40-year-old man from the Tidewater area of coastal Virginia. The agent was isolated in cell culture from an eschar biopsy specimen and designated the Portsmouth strain; recently, the first recognized case of tick bite-associated human infection was described.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009648:4656187 Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete genome

Lineage: Klebsiella pneumoniae; Klebsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated from a patient in 1994. Opportunistic pathogen that causes multiple hospital-acquired infections. This organism is the most medically important organism within the genus Klebsiella. It is an environmental organism found in water, soil, and on the surface of plants. Several strains have been isolated from plant tissues and are nitrogen-fixing endophytes that may be a source of nitrogen for the plant. Other strains can become opportunistic pathogens which infect humans, and typically causes hospital-acquired infections in immunocompromised patients. Major sites of infection include the lungs, where it causes a type of pneumonia, and urinary tract infections. Klebsiella can also enter the bloodstream (bacterimia) and cause sepsis. The pathogen can also infect animals and cause inflammation of the uterus in horses as well as more generalized infections in other mammals. This organism expresses numerous pathogenicity factors, including multiple adhesins, capsular polysaccharide, siderophores, and lipopolysaccharide for the evasion of host defenses. The multiple antibiotic resistance genes carried on the chromosome inhibit efforts to clear the organism from infected patients via antibiotic use.