Pre_GI: SWBIT SVG BLASTN

Query: NC_016948:678939 Mycobacterium intracellulare MOTT-64 chromosome, complete genome

Lineage: Mycobacterium intracellulare; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Like other closely related Actinomycetales, such as Nocardia and Corynebacterium, Mycobacteria have unusually high genomic DNA GC content and are capable of producing mycolic acids as major components of their cell wall. Mycobacterium intracellulare is a member of the Mycobacterium avium complex (MAC). These organisms cause tuberculosis in birds, and pulmonary and disseminated infections in immunocompromized humans. Mycobacterium intracellulare is also an important contributor to MAC-associated pulmonary infections in immunocompetent patients. Infection results in a characteristic pulmonary disease which requires expensive drug therapy for successful treatment. Mycobacterium intracellulare can also be isolated from the environment and, like other environmental organisms, is able to form and survive in biofilms.

No Graph yet!

Subject: NC_014976:2735423 Bacillus subtilis BSn5 chromosome, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.