Pre_GI: SWBIT SVG BLASTN

Query: NC_016948:3724390 Mycobacterium intracellulare MOTT-64 chromosome, complete genome

Lineage: Mycobacterium intracellulare; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Like other closely related Actinomycetales, such as Nocardia and Corynebacterium, Mycobacteria have unusually high genomic DNA GC content and are capable of producing mycolic acids as major components of their cell wall. Mycobacterium intracellulare is a member of the Mycobacterium avium complex (MAC). These organisms cause tuberculosis in birds, and pulmonary and disseminated infections in immunocompromized humans. Mycobacterium intracellulare is also an important contributor to MAC-associated pulmonary infections in immunocompetent patients. Infection results in a characteristic pulmonary disease which requires expensive drug therapy for successful treatment. Mycobacterium intracellulare can also be isolated from the environment and, like other environmental organisms, is able to form and survive in biofilms.

No Graph yet!

Subject: NC_021182:93000 Clostridium pasteurianum BC1, complete genome

Lineage: Clostridium pasteurianum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Environment: Soil; Isolation: Coal-cleaning residues; Temp: Mesophile; Temp: 30C. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. Clostridium pasteurianum was first isolated from soil by the Russian microbiologist Sergey Winogradsky. This organism is able to fix nitrogen and oxidize hydrogen into protons. The genes involved in nitrogen fixation and hydrogen oxidation have been extensively studied in this organism.