Query: NC_016884:256598 Sulfobacillus acidophilus DSM 10332 chromosome, complete genome Lineage: Sulfobacillus acidophilus; Sulfobacillus; Clostridiales Family XVII; Clostridiales; Firmicutes; Bacteria General Information: Country: United Kingdom; Environment: Soil; Isolation: coal spoil heap; Temp: Thermophile; Temp: 45C. Sulfobacillus acidophilus was first isolated from a coal spoil heap in the United Kingdom. This orgainism is an acidophilic sulfur- and iron-oxidizing bacterium capable of autotrophic growth on iron and sulfur.
- Sequence; - BLASTN hit (Low score = Light, High score = Dark) - hypothetical protein; - cds: hover for description
General Information: Temp: Mesophile; Habitat: Host, Root nodule. This biovar is a symbiont of clover plants and is important commercially as it is used in the agricultural industry. Strain WSM1325 is compatible with many perennial clovers of Mediterranean origin used in farming, such as T. pratense, and is therefore one of the most important clover inoculants but is incompatible with American and African perennial clovers, such as those nodulated by the dissimilar strain WSM2304. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.