Pre_GI: SWBIT SVG BLASTN

Query: NC_016830:4914406 Pseudomonas fluorescens F113 chromosome, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants. Furthermore a number of strains also posses the ability to suppress agricultural pathogens like fungal infections, hence their role as biocontrol (biological disease control) agents is under examination. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009749:289695 Francisella tularensis subsp. holarctica FTA, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from an immunocompetent 56-year old male with bacteremic pneumonia in France. Francisella tularensis is a non-motile, aerobic, rod-shaped Gram-negative bacterium and is the causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.