Pre_GI: SWBIT SVG BLASTN

Query: NC_016830:4914406 Pseudomonas fluorescens F113 chromosome, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants. Furthermore a number of strains also posses the ability to suppress agricultural pathogens like fungal infections, hence their role as biocontrol (biological disease control) agents is under examination. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008711:424482 Arthrobacter aurescens TC1, complete genome

Lineage: Arthrobacter aurescens; Arthrobacter; Micrococcaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: The TC1 strain was isolated from a South Dakota, USA spill site soil that contained high concentrations (up to 29,000 microg/ml) of atrazine. Converts agricultural biomass to ethanol. Arthrobacter aurescens is found worldwide in the soil, water, and subsurface. It breaks down organic matter and is able to transform heavy metals into less toxic forms, such as the conversion of mercury salts into the neutral metal. It is also capable of utilizing t-anethole as a sole carbon source, and transforming it with high yield into valuable aromatic compounds which could potentially be used for aromas and flavorings.