Pre_GI: SWBIT SVG BLASTN

Query: NC_016795:1673464 Brucella abortus A13334 chromosome 1, complete sequence

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008011:860000 Lawsonia intracellularis PHE/MN1-00, complete genome

Lineage: Lawsonia intracellularis; Lawsonia; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Lawsonia intracellularis PHE/MN1-00 was isolated from intestinal mucosal lesions in pigs that had proliferative enteropathy (PE). When introduced into health pigs, this organism produced the clinical and histological signs of PE. Causative agent for proliferative enteropathy in swine. This organism causes proliferative enteropathy (ileitis) in swine and other domesticated animals resulting in severe losses each year. This obligate intracellular pathogen infects the mucosa of the lower intestinal tract by initially infecting crypt cells, which are precursors that normally grow and divide in order to replace the epithelial cells. Once infection occurs, the crypt cells are stimulated to grow and divide abnormally, resulting in the proliferative phenotype. In severe cases of the disease the entire bowel can become affected and persist for up to 40 days, greatly affecting the host animal.