Pre_GI: SWBIT SVG BLASTN

Query: NC_015947:444466 Burkholderia sp. JV3 chromosome, complete genome

Lineage: Stenotrophomonas maltophilia; Stenotrophomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: Environment: Rhizosphere, Host, Rhizosphere-colonizing; Temp: Mesophile. This species is an uncommon but serious source of infection in patients with breathing tubes such as endotracheal or tracheostomy tubes, or with chronically indwelling urinary catheters. Although the organism can colonize the devices without causing an infection, under certain conditions it can cause pneumonia, urinary tract infections, or an infection of the blood. This organism can also cause infection in immunocompromised patients. It has resistance to many commonly used antibiotics and therefore is often difficult to eradicate. Most strains are resistant to co-trimoxazole.

No Graph yet!

Subject: NC_009664:4423829 Kineococcus radiotolerans SRS30216, complete genome

Lineage: Kineococcus radiotolerans; Kineococcus; Kineosporiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This organism is a coccoid bacterium originally isolated from a high-level radioactive waste cell at the Savannah River Site in Aiken, South Carolina, USA, in 2002. Radiation-resistant bacterium. Similarly to Deinococcus radiodurans, K. radiotolerans exhibits a high degree of resistance to ionizing gamma-radiation. Cells are also highly resistant to dessication. Kineococcus-like 16S rRNA gene sequences have been reported from the Mojave desert and other arid environments where these bacteria seem to be ubiquitous. Because of its high resistance to ionizing radiation and desiccation, K. radiotolerans has potential use in applications involving in situ biodegradation of problematic organic contaminants from highly radioactive environments. Moreover, comparative functional genomic characterization of this species and other known radiotolerant bacteria such as Deinococcus radiodurans and Rubrobacter xylanophilus will shed light onto the strategies these bacteria use for survival in high radiation environments, as well as the evolutionary origins of radioresistance and their highly efficient DNA repair machinery. This organism produces an orange carotenoid-like pigment. Cell growth occurs between 11-41 degresss C, pH 5-9, and in the presence of <5% NaCl and <20% glucose. Carbohydrates and alcohols are primary growth substrates.