Pre_GI: SWBIT SVG BLASTN

Query: NC_015930:1397524 Lactococcus garvieae ATCC 49156, complete genome

Lineage: Lactococcus garvieae; Lactococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Lactococcus garviae is responsible for mastitis in cows and buffalos, and it has been isolated from clinical specimens of human blood, urine, and skin. Lactococcus garvieae is also a well recognized bacterial fish pathogen. L. garvieae as the etiological agent of a hemorrhagic septicemia in farmed trout that was characterized by bilateral exophthalmos, darkening of the skin, congestion of the intestine, liver, kidney, spleen, and brain.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004061:498483 Buchnera aphidicola str. Sg (Schizaphis graminum), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is the symbiont of the aphid Schizaphis graminum and contains a large circular chromosome. Aphid endosymbiont. Almost all aphids contain maternally transmitted bacteriocyte cells, which themselves contain bacteria called Buchnera. The aphids live on a restricted diet (plant sap), rich in carbohydrates, but poor in nitrogenous or other essential compounds. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.