Query: NC_015760:8914 Streptococcus salivarius CCHSS3, complete genome
Lineage: Streptococcus salivarius; Streptococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria
General Information: The commensal bacterium Streptococcus salivarius is predominant specie of the human oropharyngeal tract and exerts an important role in oral ecology. Streptococcus salivarius is an aerobic, gram-positive coccus. This organism is the most common organism isolated from the human oral cavity. Streptococcus salivarius can also be an opportunistic pathogen causing endocarditis, blood infection, and peritonitis. Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Members of this genus vary widely in pathogenic potential. Most streptococci are facultative anaerobes, and some are obligate anaerobes.
Subject: NC_016047:261304 Bacillus subtilis subsp. spizizenii TU-B-10 chromosome, complete
Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria
General Information: This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system. The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.