Pre_GI: SWBIT SVG BLASTN

Query: NC_015680:1475917 Pyrococcus yayanosii CH1 chromosome, complete genome

Lineage: Pyrococcus yayanosii; Pyrococcus; Thermococcaceae; Thermococcales; Euryarchaeota; Archaea

General Information: Pyrococcus yayanosii CH1 is the first obligate piezophilic hyperthermophilic archaeon isolated from the deep-sea hydrothermal site Ashadze on the mid-Atlantic ridge at a depth of 4,100 m. This organism grows within a temperature range of 80 to 108 degrees C and a hydrostatic pressure range of 20 to 120 MPa, with optima at 98 degrees C and 52 MPa, respectively.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012563:1 Clostridium botulinum A2 str. Kyoto, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from a case of infant botulism in Kyoto, Japan in 1978. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.