Pre_GI: SWBIT SVG BLASTN

Query: NC_015275:1 Clostridium lentocellum DSM 5427 chromosome, complete genome

Lineage: Cellulosilyticum lentocellum; Cellulosilyticum; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria

General Information: Isolation: River sediment with paper mill waste; Temp: Mesophile; Temp: 40C; Isolation:river sediment with paper mill waste; Country:United Kingdom: River Don, Scotland. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This is a cellulolytic bacterium isolated from river sediment containing paper-mill waste.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009749:1699152 Francisella tularensis subsp. holarctica FTA, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from an immunocompetent 56-year old male with bacteremic pneumonia in France. Francisella tularensis is a non-motile, aerobic, rod-shaped Gram-negative bacterium and is the causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.