Pre_GI: SWBIT SVG BLASTN

Query: NC_015275:3846260 Clostridium lentocellum DSM 5427 chromosome, complete genome

Lineage: Cellulosilyticum lentocellum; Cellulosilyticum; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria

General Information: Isolation: River sediment with paper mill waste; Temp: Mesophile; Temp: 40C; Isolation:river sediment with paper mill waste; Country:United Kingdom: River Don, Scotland. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This is a cellulolytic bacterium isolated from river sediment containing paper-mill waste.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012416:4973 Wolbachia sp. wRi, complete genome

Lineage: Wolbachia; Wolbachia; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Endosymbiont. Obligate intracellular bacterium infects around 20% of all insect species. Naturally infects Drosophila simulans and induces almost complete cytoplasmic incompatibility in its host. Wolbachia sp. subsp. Drosophila simulans (strain wRi) is an intracellular proteobacterium that infect insects as well as isopods, spiders, scorpions, mites, and filarial nematodes. It is maternally inherited and induces reproductive alterations of insect populations by male killing, feminization, parthenogenesis, or cytoplasmic incompatibility. In insect populations, Wolbachia sp. induce reproductive manipulations to enhance their own spreading. The most frequently observed reproductive abnormality is cytoplasmic incompatibility, where uninfected females are unable to produce offspring with infected males, whereas infected females can produce offspring with both infected and uninfected males, thus creating a reproductive advantage for infected females. Other spectacular effects of Wolbachia sp. infections are male embryo killing, feminization, and parthenogenesis induction.