Query: NC_015275:3846260 Clostridium lentocellum DSM 5427 chromosome, complete genome Lineage: Cellulosilyticum lentocellum; Cellulosilyticum; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria General Information: Isolation: River sediment with paper mill waste; Temp: Mesophile; Temp: 40C; Isolation:river sediment with paper mill waste; Country:United Kingdom: River Don, Scotland. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This is a cellulolytic bacterium isolated from river sediment containing paper-mill waste.
- Sequence; - BLASTN hit (Low score = Light, High score = Dark) - hypothetical protein; - cds: hover for description
General Information: The strain was isolated from a symbiotic association with the gymnosperm cycad Macrozamia sp. It typically grows in freshwater habitats. This genera of cyanobacteria are typically terrestrially-associated and are especially found in limestone or nutrient-poor soils. They are very similar to Anabaena spp. and historically they have been distinguished on the basis of morphological and life cycle characteristics. Nostoc spp. can grow heterotrophically or photoheterotrophically, and form heterocysts for nitrogen fixation. This organism can form nitrogen-fixing symbiotic relationships with plants and fungi such as the bryophyte Anthoceros punctatus. The relationship is relatively simple as compared to the Rhizobial symbiotic relationship. In the presence of the plant, hormogonia (short motile filaments) infect the plant, and then form long heterocyst-containing (nitrogen-fixing differentiated bacterial cells) filaments. The bacterial cell receives carbon sources in exchange for fixed nitrogen.