Pre_GI: SWBIT SVG BLASTN

Query: NC_015259:485015 Polymorphum gilvum SL003B-26A1 chromosome, complete genome

Lineage: Polymorphum gilvum; Polymorphum; ; ; Proteobacteria; Bacteria

General Information: Polymorphum gilvum SL003B-26A1 is a type strain of a newly published novel species in the novel genus Polymorphum. It was isolated from a crude oil-polluted saline soil in Shengli Oilfield, China and could use the crude oil as the sole carbon source. Oil pollution has become a global issue because of its severe ecological impact and destruction. Bioremediation is proved to be an effective process to restore the oil polluted environments. The complete genome sequence of Polymorphum gilvum SL003B-26A1 provides new strategies for bioremediation of oil contaminated environment.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002950:1334500 Porphyromonas gingivalis W83, complete genome

Lineage: Porphyromonas gingivalis; Porphyromonas; Porphyromonadaceae; Bacteroidales; Bacteroidetes; Bacteria

General Information: This strain (also known as HG66) is virulent in a mouse model and has been extensively studied. It was originally isolated by H. Werner in the 1950s in Bonn, Germany, from an unknown human infection. Associated with severe and chronic periodontal disease. This organism is associated with severe and chronic periodontal (tissues surrounding and supporting the tooth) diseases. Progression of the disease is caused by colonization by this organism in an anaerobic environment in host tissues and severe progression results in loss of the tissues supporting the tooth and eventually loss of the tooth itself. The black pigmentation characteristic of this bacterium comes from iron acquisition that does not use the typical siderophore system of other bacteria but accumulates hemin.Peptides appear to be the predominant carbon and energy source of this organism, perhaps in keeping with its ability to destroy host tissue. Oxygen tolerance systems play a part in establishment of the organism in the oral cavity, including a superoxide dismutase. Pathogenic factors include extracellular adhesins that mediate interactions with other bacteria as well as the extracellular matrix, and a host of degradative enzymes that are responsible for tissue degradation and spread of the organism including the gingipains, which are trypsin-like cysteine proteases.