Pre_GI: SWBIT SVG BLASTN

Query: NC_014976:2231984 Bacillus subtilis BSn5 chromosome, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_021182:3409199 Clostridium pasteurianum BC1, complete genome

Lineage: Clostridium pasteurianum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Environment: Soil; Isolation: Coal-cleaning residues; Temp: Mesophile; Temp: 30C. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. Clostridium pasteurianum was first isolated from soil by the Russian microbiologist Sergey Winogradsky. This organism is able to fix nitrogen and oxidize hydrogen into protons. The genes involved in nitrogen fixation and hydrogen oxidation have been extensively studied in this organism.