Pre_GI: SWBIT SVG BLASTN

Query: NC_014974:758129 Thermus scotoductus SA-01 chromosome, complete genome

Lineage: Thermus scotoductus; Thermus; Thermaceae; Thermales; Deinococcus-Thermus; Bacteria

General Information: This is a thermophilic, facultatively mixotrophic sulfur-oxidizing bacterium. Thermus scotoductus SA-01 was isolated from fissure water in a South African gold mine. This organism is a thermophilic bacterium which was isolated from fissure water in the Witwatersrand Supergroup at a depth of 3.2 km below surface in a South African gold mine. It is a 2.9-billion-year-old formation of low permeability sandstone and shale with minor volcanic units and conglomerates. The ambient temperature of the rock is approximately 60°C. Samples were collected from a freshly mined rock surface and from a water-producing borehole that penetrated 121 m horizontally into the formation at a depth of 3,198 m. T. scotoductus SA-01 is a facultative anaerobe capable of coupling the oxidation of organic substrates to reduction of a wide range of electron acceptors, including nitrate, Fe(III), Mn(IV) or S(0) as terminal electron acceptors.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007948:3541987 Polaromonas sp. JS666, complete genome

Lineage: Polaromonas; Polaromonas; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was isolated from sediment contaminated with cis-dichloroethane (cDCE), a common pollutant resulting from widespread manufacture and use of industrial solvents. This bacterium is the only known organism capable of using cDCE as a sole carbon and energy source. The ability of this strain to convert ethene to epoxyethane suggests that the first step in the cDCE biodegradation pathway is the oxidation of cDCE to an epoxide compound. Bacteria that are able to grow on cDCE are rare, and have only been found in very few highly selective artificial environments. The discovery of this bacteria may provide a low cost, self-sustaining bioremediation method in areas where cDCE is a problem contaminant.