Pre_GI: SWBIT SVG BLASTN

Query: NC_014844:903877 Desulfovibrio aespoeensis Aspo-2 chromosome, complete genome

Lineage: Desulfovibrio aespoeensis; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Country: Sweden; Environment: Animal intestinal microflora, Fresh water; Isolation: Granitic rock aquifer at 600 m depth; Temp: Mesophile; Temp: 30C. Desulfovibrio aespoeensis Aspo-2 is a halotolerant, sulfate-reducing Gram-negative bacterium isolated from granitic groundwater sampled at a depth of 600 m at Aspo hard rock laboratory, Sweden.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011959:815601 Thermomicrobium roseum DSM 5159, complete genome

Lineage: Thermomicrobium roseum; Thermomicrobium; Thermomicrobiaceae; Thermomicrobiales; Chloroflexi; Bacteria

General Information: Thermomicrobium roseum DSM 5159 was isolated from Yellowstone National Park, USA. Obligate thermophile with unusual cell wall structure. Thermomicrobium roseum is a red-pigmented, rod-shaped, Gram-negative extreme thermophile that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Analyses of environmental sequences from hot spring environments show that T.roseum displays a low quantity but ubiquitous presence in top layers of microbial mats. Few standard housekeeping genes are found on the megaplasmid, however, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, is is propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Because T. roseum is a deep-branching member of this phylum, eventhough this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi.