Pre_GI: SWBIT SVG BLASTN

Query: NC_014816:545441 Asticcacaulis excentricus CB 48 chromosome 1, complete sequence

Lineage: Asticcacaulis excentricus; Asticcacaulis; Caulobacteraceae; Caulobacterales; Proteobacteria; Bacteria

General Information: Environment: Fresh water; Isolation: Pondwater; Temp: Mesophile; Isolation: pond water. Asticcacaulis excentricus inhabits aquatic environments and plays an important part in biogeochemical cycling of organic nutrients. This bacterium undergoes an unusual developmental cycle in which a swarming motile cell becomes a stalked cell that is attached to a solid surface. The stalked cell then undergoes asymmetric cell division and produces one flagellated motile daughter cell and one stalked daughter cell. Thus, the asymmetric processes in this organism provide useful models for differentiation and development.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003062:50756 Agrobacterium tumefaciens str. C58 chromosome circular, complete

Lineage: Agrobacterium fabrum; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain is a biovar 1 nopaline-producing strain originally isolated from a cherry tree tumor. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.