Pre_GI: SWBIT SVG BLASTN

Query: NC_014802:441000 Campylobacter jejuni subsp. jejuni ICDCCJ07001 chromosome, complete

Lineage: Campylobacter jejuni; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: Gram-negative, microaerophilic, flagellate, spiral bacterium, Campylobacter species are the leading cause of food-borne gastroenteritis in developed countries. Infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain-Barre syndrome (GBS). Strain ICDCCJ07001 was isolated following a GBS outbreak in Shuangyang, a town in northern China in 2007, from a severely affected 15 year-old girl GBS patient who had been on a ventilator for 180 days. Her clinical symptoms were motor axonal neuropathy. This organism is the leading cause of bacterial food poisoning (campylobacteriosis) in the world, and is more prevalent than Salmonella enteritis (salmonellosis). Found throughout nature, it can colonize the intestines of both mammals and birds, and transmission to humans occurs via contaminated food products. This organism can invade the epithelial layer by first attaching to epithelial cells, then penetrating through them. Systemic infections can also occur causing more severe illnesses.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010803:2444120 Chlorobium limicola DSM 245, complete genome

Lineage: Chlorobium limicola; Chlorobium; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: Isolated from Gilroy Hot Spring. The green sulfur bacteria (GSB; Phylum Chlorobi ) are commonly found in illuminated, stratified, and anoxic aquatic environments, sediments, and other sulfide-rich environments including hot springs. This bacterium has been used to model a variety of enzyme and reaction center pathways, including ATP-citrate lyase, isocitrate dehydrogenase, and the reverse Krebs cycle used in photosynthesis. Now called the "reductive carbolic acid cycle", this was found to be the sole carbon dioxide assimilation pathway in other green sulfur bacteria since its discovery.