Pre_GI: SWBIT SVG BLASTN

Query: NC_014654:2101500 Halanaerobium sp. 'sapolanicus' chromosome, complete genome

Lineage: Halanaerobium hydrogeniformans; Halanaerobium; Halanaerobiaceae; Halanaerobiales; Firmicutes; Bacteria

General Information: Environment: Fresh water, Sediment; Temp: Mesophile; Temp: 34 - 42C. Organisms identified in the genus Halanaerobium (also known as Haloanaerobium) were first isolated from the Great Salt Lake in Utah, USA and have since been isolated from diverse saline environments such as oil reserviors, brine-seawater interfaces and hypersaline sediments. These bacteria are extremely salt-tolerant and are able to grow in concentrations of salt as high as 25%.

No Graph yet!

Subject: NC_013418:459650 Blattabacterium sp. (Periplaneta americana) str. BPLAN, complete

Lineage: Blattabacterium; Blattabacterium; Blattabacteriaceae; Flavobacteriales; Bacteroidetes; Bacteria

General Information: This organism is the endosymbiont of the American cockroach, Periplaneta americana. It is a Gram-negative maternally inherited bacteria which lives in specialized cells in the host's abdominal fat body. Phylogenetic analyses for the Blattabacterium-cockroach symbiosis supports the hypothesis of co-evolution between symbionts and hosts dating back to more than 140 million years ago. Cockroaches are omnivorous insects, often subsisting on a nitrogen-poor diet, and Blattabacterium have been hypothesized to participate in uric acid degradation, nitrogen assimilation, and nutrient provisioning. Genome sequencing and metabolic reconstruction shows that Blattabacterium can recycle nitrogen from urea and ammonia, which are uric acid degradation products, into glutamate, using urease and glutamate dehydrogenase, and thus would be able to provide its host with some essential amino acids, vitamins and cofactors. The bacterium relies on asparagine and glutamine supplied by the host; it may be able to make proline from arginine via the urea cycle.