Pre_GI: SWBIT SVG BLASTN

Query: NC_014551:157418 Bacillus amyloliquefaciens DSM 7, complete genome

Lineage: Bacillus amyloliquefaciens; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Originally isolated from infested soil in Germany. Bacillus amyloliquefaciens is a member of a group of free-living soil bacteria known to promote plant growth and suppress plant pathogens. Bacillus amyloliquefaciens is able to degrade myo-inositol hexakisphosphate (phytate), making phosphorus more available to plants. This organism also produces antifungal and antibacterial substances, such as bacillomycin D, surfactin, and bacillaene, which protect the plant from pathogenic organisms. In addition, proteases and amylases produced by Bacillus amyloliquefaciens are used in industrial applications.

No Graph yet!

Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.