Pre_GI: SWBIT SVG BLASTN

Query: NC_014323:3669704 Herbaspirillum seropedicae SmR1 chromosome, complete genome

Lineage: Herbaspirillum seropedicae; Herbaspirillum; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Root-associated nitrogen-fixing bacterium. Herbaspirillum seropedicae is an endophitic nitrogen-fixing beta-Proteobacteria found associated with important crops such as sugarcane, wheat, maize, rice and sorghum. It is non-phytopathogenic and produces interesting biotechnological products such as polybetaalkanoates and cyanophycin. Herbaspirillum seropedicae was isolated from the roots of rice plants, and is member of a group of free-living soil bacteria known to promote plant growth. The yields of rice and sorghum were significantly increased when grown in soil inoculated with Herbaspirillum seropedicae.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_015709:1459838 Zymomonas mobilis subsp. pomaceae ATCC 29192 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Country: United Kingdom; Isolation: Sick cider; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.