Pre_GI: SWBIT SVG BLASTN

Query: NC_014217:3431878 Starkeya novella DSM 506 chromosome, complete genome

Lineage: Starkeya novella; Starkeya; Xanthobacteraceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Isolation: Soil; Temp: Mesophile; Temp: 26 - 30C; Habitat: Soil. Starkeya novella is a non-motile soil bacterium that belongs to the facultatively heterotrophic microbes. It is able to grow heterotrophically on a variety of single-carbon compounds, sugar alcohols, amino acids, carboxylic acids, and fatty acids. In addition, it is able to grow chemolithoautotrophically using a variety of inorganic and organic sulfur compounds such as thiosulfate, tetrathionate, dimethylsulfide (DMS), and dimethylsulfoxide.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_006576:1435422 Synechococcus elongatus PCC 6301, complete genome

Lineage: Synechococcus elongatus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: Freshwater organism. These unicellular cyanobacteria are also known as blue green algae and along with Prochlorococcus are responsible for a large part of the carbon fixation that occurs in marine environments. Synechococcus have a broader distribution in the ocean and are less abundant in oligotrophic (low nutrient) regions. These organism utilize photosystem I and II to capture light energy. They are highly adapted to marine environments and some strains have evolved unique motility systems in order to propel themselves towards areas that contain nitrogenous compounds. An obligate photoautotroph, it has been studied extensively by an international research community with respect to acquisition of organic carbon, transport and regulation of nitrogen compounds, adaptation to nutrient stresses, and reponse to light intensity.