Pre_GI: SWBIT SVG BLASTN

Query: NC_014034:152264 Rhodobacter capsulatus SB1003 chromosome, complete genome

Lineage: Rhodobacter capsulatus; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: This strain is a derivative strain isolated in the laboratory of Barry Marrs from the classical progenitor strain B10. It is rifampicin-resistant, produces GTA, and is capable of growing under high illumination (resistant to photooxidative killing). Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to use photosynthesis and usually can grow under both anaerobic and aerobic conditions. This organism is a facultatively phototrophic purple non-sulfur bacterium and the type species of the Rhodobacter group. The colony's color depends largely on the amount of oxygen present in its environment. While it is able to produce cellular energy in a number of different ways, it can rely on anoxygenic photosynthesis under anaerobic conditions in the presence of light. Some strains produce the Gene Transfer Element (GTA), a pro-phage particle capable of transferring genetic material between strains.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008346:36176 Syntrophomonas wolfei subsp. wolfei str. Goettingen, complete

Lineage: Syntrophomonas wolfei; Syntrophomonas; Syntrophomonadaceae; Clostridiales; Firmicutes; Bacteria

General Information: Syntrophomonas wolfeisubsp. wolfei str. Goettingen (DSM 2245B) was isolated from anaerobic digestor sludge. Fatty acid-oxidizing bacterium. This organism is an anaerobic syntrophic fatty acid-oxidizing bacterium. It is the only bacterium known to produce energy from anaerobic degradation of saturated four to eight carbon fatty acids with protons serving as the electron acceptor. The cells have an unusual multilayered gram-negative cell wall. Syntrophomonas wolfei grows in coculture with Methanospirillum hungatei and can be isolated from anaerobic environments such as aquatic sediment or sewage digestor sludge.