Pre_GI: SWBIT SVG BLASTN

Query: NC_013892:992811 Xenorhabdus bovienii SS-2004 chromosome, complete genome

Lineage: Xenorhabdus bovienii; Xenorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Insect pathogenic, facultatively anaerobic, non-spore forming Gram-negative bacterium. This genus is a group of insect pathogens which live in a mutualistic relationship with the soil nematode family Steinernematidae. Free-living, juvenile Steinernema spp. enter insect larvae through the digestive tract. They penetrate the larvae body cavity and release Xenorhabdus spp. into the hemolymph (blood). The bacteria multiply rapidly, killing the larvae, and providing suitable nutrient conditions for the growth and reproduction of the Steinernema spp. The nematode matures and reproduces. The new juveniles reassociate with Xenorhabdus spp. and are released into the soil.Xenorhabdus bovienii. Unlike Xenorhabdus nematophila, which is found in only in Steinernema carpocapsae, Xenorhabdus bovienii is associated with several different species of Steinernema.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012962:4942000 Photorhabdus asymbiotica, complete genome

Lineage: Photorhabdus asymbiotica; Photorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is a North American clinical isolate from human blood. Photorhabdus asymbiota, formerly Xenorhabdus luminescens, has been isolated from human wound and blood infections often in association with spider bites. This species can also be isolated from the entomopathogenic nematode Heterorhabditis indica. Photorhabdus asymbiota is divided into two subspecies, subsp. australis which contains the Australian clinical isolates and subsp. asymbiota which contains the North American isolates. Photorhabdus is currently subdivided into three species, luminescens, temperate and asymbiotica all of which have been isolated as symbionts of heterorhabditid nematodes. This organism is unusual in that it is symbiotic within one insect, and pathogenic in another, the only organism that is known to exhibit this dual phenotype.