Pre_GI: SWBIT SVG BLASTN

Query: NC_013855:964000 Azospirillum sp. B510 plasmid pAB510a, complete sequence

Lineage: Azospirillum; Azospirillum; Rhodospirillaceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Azospirillum are commonly isolated from the rhizosphere and root surfaces from a wide variety of plants. Azospirillum species are considered to be plant growth promoting organisms, producing plant hormones for cell elongation (auxins), cell division and growth (cytokinins) and stem elongation (gibberellins). These compounds contribute to an enhanced uptake of nutrients and water and thus increased plant growth. Azospirillum sp. B510 was isolated from rice in Japan.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008513:343540 Buchnera aphidicola str. Cc (Cinara cedri), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is found in the cedar aphid, Cinara cedri. Aphid endosymbiont. Almost all aphids contain maternally transmitted bacteriocyte cells, which themselves contain bacteria called Buchnera. The aphids live on a restricted diet (plant sap), rich in carbohydrates, but poor in nitrogenous or other essential compounds. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.