Pre_GI: SWBIT SVG BLASTN

Query: NC_013798:345339 Streptococcus gallolyticus UCN34, complete genome

Lineage: Streptococcus gallolyticus; Streptococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Isolated from a human case of endocarditis associated with colon cancer in Caen, France in 2001. Streptococci are non-motile, Gram-positive cocci with widely varying pathogenic potential that occur in pairs or chains. Streptococcus gallolyticus (strain UCN34, biotype I) is a commensal Gram-positive bacterium isolated from various habitats, including feces of many animals and from human clinical sources. S. gallolyticus is part of the rumen flora but also a cause of disease in ruminants as well as in birds (septicemia in pigeons, outbreaks in broiler flocks, or bovine mastitis). This is a tannin-degrading Streptococcus species. Strains have been isolated from various habitats, including feces of many animals and from human clinical sources. This organism can be a cause of infectious endocarditis.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_001263:2236777 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.