Pre_GI: SWBIT SVG BLASTN

Query: NC_013791:1291339 Bacillus pseudofirmus OF4 chromosome, complete genome

Lineage: Bacillus pseudofirmus; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain was isolated from soil in New York State by alkaline enrichment cultures. Because of its pH range and genetic accessibility, this alkaliphile has been extensively used as the model organism for studies of the bioenergetics of life at extremely high pH. This organism is a facultative, extreme alkaliphile that grows non-fermentatively as well as fermentatively in a pH range from near neutral to above pH 11.2.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014479:3452484 Bacillus subtilis subsp. spizizenii str. W23 chromosome, complete

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.