Pre_GI: SWBIT SVG BLASTN

Query: NC_013714:1028569 Bifidobacterium dentium Bd1, complete genome

Lineage: Bifidobacterium dentium; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Common oral and gut bacterium. Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes. Bifidobacterium dentium species represents over forty strains which were isolated from human dental caries and human feces.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004369:1552847 Corynebacterium efficiens YS-314, complete genome

Lineage: Corynebacterium efficiens; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This is the type strain of C. efficiens isolated by researchers of Ajinomoto food company from soils at Kanagawa, Japan in the late 1980's. The strain can grow and produce glutamate at temperatures above up to 45oC in contrast to C. glutamicum that is only efficient at around 30oC. This feature is very beneficial for industrial applications, because less heat removal is required in fermenters to be used for cultivation of these bacteria. Glutamate-producing bacterium. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a recently proposed new species of the genus capable of producing significant quantities of glutamic acid (glutamate), an important enhancer of taste in the food industry. It is currently used commercially to produce glutamate and other amino acids and compounds.