Pre_GI: SWBIT SVG BLASTN

Query: NC_013508:3387272 Edwardsiella tarda EIB202, complete genome

Lineage: Edwardsiella tarda; Edwardsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Edwardsiella tarda is a Gram-negative member of the normal gut microflora of fish, humans, chickens and other animals. This organism is also a serious pathogen of marine and freshwater fish and has been isolated from channel catfish, Japanese eels, flounder, tilapia, and other economically important fish. Infection by this organism is characterized by septicemia, internal abscesses, and skin lesions. This disease is often associated with poor water quality and mortality in aquaculture can be high. Edwardsiella tarda also causes opportunistic infections in humans, most commonly gastroenteritis and wound infections. However, this organism has been isolated from cases of septicemia and meningitis, primarily in immunocompromised patients.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004344:622318 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,

Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.