Pre_GI: SWBIT SVG BLASTN

Query: NC_013410:155236 Fibrobacter succinogenes subsp. succinogenes S85 chromosome,

Lineage: Fibrobacter succinogenes; Fibrobacter; Fibrobacteraceae; Fibrobacterales; Fibrobacteres; Bacteria

General Information: Temp: Mesophile; Temp: 37C; Habitat: Host. Cellulolytic rumen bacterium. This bacterium is one of the three most predominant cellulolytic organisms in the rumen. Since cellulose is one of the most abundant carbohydrates on the planet, this organism is, therefore, an important part of the global carbon biogeochemical cycle, converting the mass of fixed carbon generated by photosynthetic organisms back to products that eventually end up as carbon dioxide. Increasing cellulose degradation is an important goal in industrial processes. This organism is highly specialized for cellulose degradation, and is only capable of utilizing cellulose and cellulolytic degradation products as carbon sources. Access to cellulose is a rate-liming step in degradation, and the cellulolytic organisms have devised a number of mechanisms for improving access to this insoluble substrate, one of which is the production of surface-localized cellulases. The active enzymes are cell wall associated, but the presence of cellulosomes, large multiprotein cellulase complexes, has not been detected in this organism. Adherence is another method used to promote cellulose degradation, and this organism produces an extracellular matrix of glycoprotein glycocalyx which allows attachment to insoluble cellulose.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008786:1332041 Verminephrobacter eiseniae EF01-2, complete genome

Lineage: Verminephrobacter eiseniae; Verminephrobacter; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This species was isolated from the kidney of the earthworm Eisenia foetida. Evidence based on curing experiments, Acidovorax-specific probes, and 16S phylogeny, indicate that earthworm egg capsules contain high numbers of the bacterial endosymbiont. Juvenile earthworms are colonized during embryonic development within the egg capsule, and failing this are not likely to acquire the symbiont by association with colonized adults or their bedding.