Pre_GI: SWBIT SVG BLASTN

Query: NC_013199:2536705 Lactobacillus rhamnosus Lc 705, complete genome

Lineage: Lactobacillus rhamnosus; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. Lactobacillus rhamnosus is used in the manufacture of cheese and other dairy products to aid ripening and enhance flavors. This organism has also been shown to stimulate the immune system and have antibacterial activity against intestinal pathogens, indicating that it may be useful as a probiotic.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_015067:2282000 Bifidobacterium longum subsp. longum JCM 1217, complete genome

Lineage: Bifidobacterium longum; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: This organism is found in adult humans and formula fed infants as a normal component of gut flora. Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity.