Pre_GI: SWBIT SVG BLASTN

Query: NC_012881:2957309 Desulfovibrio salexigens DSM 2638, complete genome

Lineage: Desulfovibrio salexigens; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Isolation: mud in British Guyana; Temp: Mesophile; Temp: 37 C; Habitat: Mud. Desulfovibrio are sulfate-reducing bacteria which reduce sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. These organisms typically grow anaerobically, although some can tolerate oxygen, and they utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. These organisms are responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004578:3849835 Pseudomonas syringae pv. tomato str. DC3000, complete genome

Lineage: Pseudomonas syringae group genomosp. 3; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: While pathogenic on Arabidopsis thaliana, it is mainly characterized as causing bacterial speck disease on tomato plants, which has a large economic impact. This organism is mainly endophytic and is a poor colonizes of plant surfaces but can multiply within the host. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.