Query: NC_012815:1465670 Bifidobacterium animalis subsp. lactis DSM 10140, complete genome Lineage: Bifidobacterium animalis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria General Information: Bifidobacterium animalis subsp. lactis (strain DSM 10140 / JCM 10602 / LMG 18314) is an anaerobic Gram-positive lactic acid bacterium commonly found in the guts of healthy humans and has been identified in the infant gut biota, particularly in ileal, fecal, and mucosal samples. Some strains of B. animalis subsp. lactis are able to survive in the GIT, to adhere to human epithelial cells in vitro, to modify fecal flora, to modulate the host immune response, or to prevent microbial gastroenteritis and colitis.
- Sequence; - BLASTN hit (Low score = Light, High score = Dark) - hypothetical protein; - cds: hover for description
General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.