Pre_GI: SWBIT SVG BLASTN

Query: NC_012781:302387 Eubacterium rectale ATCC 33656, complete genome

Lineage: Eubacterium rectale; Eubacterium; Eubacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Eubacterium rectale ATCC 33656 was isolated from human feces. This genus has been isolated as normal flora from feces, rumen, and periodontal tissue. Eubacterium spp. are thought to play a beneficial role in maintaining the normal ecology of the large intestine, in part by producing chemicals like butyric acid which act to inhibit the growth of other bacteria. These organisms are occasionally isolated from wounds and abscesses and may be an opportunistic pathogen. This genus has also been isolated from sewage and soil.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011961:528837 Thermomicrobium roseum DSM 5159 plasmid unnamed, complete sequence

Lineage: Thermomicrobium roseum; Thermomicrobium; Thermomicrobiaceae; Thermomicrobiales; Chloroflexi; Bacteria

General Information: Thermomicrobium roseum DSM 5159 was isolated from Yellowstone National Park, USA. Obligate thermophile with unusual cell wall structure. Thermomicrobium roseum is a red-pigmented, rod-shaped, Gram-negative extreme thermophile that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Analyses of environmental sequences from hot spring environments show that T.roseum displays a low quantity but ubiquitous presence in top layers of microbial mats. Few standard housekeeping genes are found on the megaplasmid, however, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, is is propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Because T. roseum is a deep-branching member of this phylum, eventhough this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi.