Pre_GI: SWBIT SVG BLASTN

Query: NC_012730:652092 Rickettsia peacockii str. Rustic, complete genome

Lineage: Rickettsia peacockii; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Rickettsia peacockii was initially identified in wood ticks from the eastern side of the Bitterroot Valley in Montana. Cases of Rocky Mountain spotted fever in the Bitterroot Valley are associated with exposure to ticks from the western side. Ticks from the east side are primarily infected with R. peacockii which is nonvirulent and may prevent the establishment of pathogenic Rickettsia species in these ticks.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007413:5264463 Anabaena variabilis ATCC 29413, complete genome

Lineage: Anabaena variabilis; Anabaena; Nostocaceae; Nostocales; Cyanobacteria; Bacteria

General Information: These cyanobacteria are bluegreen algae that are capable of fixing carbon and nitrogen. They form long filaments and can be found worldwide in various aquatic environments as well as some terrestrial ones. These bacteria can form a variety of differentiated cell types, including spore-like cells (akinetes), small motile filaments (hormongia) and most importantly, heterocysts that are nitrogen-producing cells. The heterocyst produces multiple layers outside of its cell wall, shuts down photosystem II in order to inhibit oxygenic photosynthesis and ramps up metabolism in order to use up the oxygen present. Heterocysts donate fixed nitrogen compounds as amino acids to neighboring cells and in return receive a photosynthetically produced carbon source such as sucrose. These organisms produce toxic blooms in aquatic environments that are harmful or fatal to animals and humans due to the various cyanotoxins they produce. Anabaena variabilis is a filamentous heterocyst-forming cyanobacterium that fixes nitrogen and CO2 using the energy of sunlight via oxygen-evolving plant-type photosynthesis. In addition, this organism has been studied extensively for the production of hydrogen using solar energy.