Pre_GI: SWBIT SVG BLASTN

Query: NC_012668:442601 Vibrio cholerae MJ-1236 chromosome 1, complete sequence

Lineage: Vibrio cholerae; Vibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: Vibrio cholerae MJ-1236 is a toxigenic O1 El Tor Inaba strain from Matlab, Bangladesh, 1994 that represents the "Matlab variant" of El Tor. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. Vibrio cholerae can colonize the mucosal surface of the small intestines of humans where it will cause cholera, a severe and sudden onset diarrheal disease. One famous outbreak was traced to a contaminated well in London in 1854 by John Snow, and epidemics, which can occur with extreme rapidity, are often associated with conditions of poor sanitation. The disease has a high lethality if left untreated, and millions have died over the centuries. There have been seven major pandemics between 1817 and today. Six were attributed to the classical biotype, while the 7th, which started in 1961, is associated with the El Tor biotype.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014817:142976 Asticcacaulis excentricus CB 48 chromosome 2, complete sequence

Lineage: Asticcacaulis excentricus; Asticcacaulis; Caulobacteraceae; Caulobacterales; Proteobacteria; Bacteria

General Information: Environment: Fresh water; Isolation: Pondwater; Temp: Mesophile; Isolation: pond water. Asticcacaulis excentricus inhabits aquatic environments and plays an important part in biogeochemical cycling of organic nutrients. This bacterium undergoes an unusual developmental cycle in which a swarming motile cell becomes a stalked cell that is attached to a solid surface. The stalked cell then undergoes asymmetric cell division and produces one flagellated motile daughter cell and one stalked daughter cell. Thus, the asymmetric processes in this organism provide useful models for differentiation and development.