Pre_GI: SWBIT SVG BLASTN

Query: NC_012668:2744393 Vibrio cholerae MJ-1236 chromosome 1, complete sequence

Lineage: Vibrio cholerae; Vibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: Vibrio cholerae MJ-1236 is a toxigenic O1 El Tor Inaba strain from Matlab, Bangladesh, 1994 that represents the "Matlab variant" of El Tor. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. Vibrio cholerae can colonize the mucosal surface of the small intestines of humans where it will cause cholera, a severe and sudden onset diarrheal disease. One famous outbreak was traced to a contaminated well in London in 1854 by John Snow, and epidemics, which can occur with extreme rapidity, are often associated with conditions of poor sanitation. The disease has a high lethality if left untreated, and millions have died over the centuries. There have been seven major pandemics between 1817 and today. Six were attributed to the classical biotype, while the 7th, which started in 1961, is associated with the El Tor biotype.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009792:3665369 Citrobacter koseri ATCC BAA-895, complete genome

Lineage: Citrobacter koseri; Citrobacter; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Citrobacter koseri ATCC BAA-895 is a clinical isolate from a human infant. Causative agent of neonatal meningitis. Citrobacter koseri, previously known as Citrobacter diversus, Levinea diversus or Levinea malonatica resides in a wide range of environments, including soil, water and food products. It is an occasional inhabitant of human and animal intestines, but is mainly characterized as being a causative agent of neonatal meningitis with an extreme high rate of multiple brain abscess initiations and a concomitant high moratility rate. The bacteria are used in neonatal rat models to study the mechanism of blood-brain barrier penetration, host immune response evasion and its resistance to phagocytotic killing.