Pre_GI: SWBIT SVG BLASTN

Query: NC_012659:1008028 Bacillus anthracis str. A0248, complete genome

Lineage: Bacillus anthracis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain (96-10355; K1256) is a human isolated from USA. This organism was the first to be shown to cause disease by Dr. Robert Koch, leading to the formulation of Koch's postulates, which were verified by Dr. Louis Pasteur (the organism, isolated from sick animals, was grown in the laboratory and then used to infect healthy animals and make them sick). This organism was also the first for which an attenuated strain was developed as a vaccine. Herbivorous animals become infected with the organism when they ingest spores from the soil whereas humans become infected when they come into contact with a contaminated animal. Anthrax is not transmitted due to person-to-person contact. The three forms of the disease reflect the sites of infection which include cutaneous (skin), pulmonary (lung), and intestinal. Pulmonary and intestinal infections are often fatal if left untreated. Spores are taken up by macrophages and become internalized into phagolysozomes (membranous compartment) whereupon germination initiates. Bacteria are released into the bloodstream once the infected macrophage lyses whereupon they rapidly multiply, spreading throughout the circulatory and lymphatic systems, a process that results in septic shock, respiratory distress and organ failure. The spores of this pathogen have been used as a terror weapon.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010723:1014334 Clostridium botulinum E3 str. Alaska E43, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was probably isolated from salmon eggs associated with a foodborne case of botulism in Alaska, however the exact details are not available. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.